ON SIMILARITY LAWS FOR THE DEVELOPED
TURBULENCE OF DILUTE POLYMER SOLUTIONS

V. A. Gorodtsov and V. S. Belokon' UDC 534,641:517.4

The peculiarities of turbulence in weak polymer solutions are discussed from the aspects of
similarity theory and dimensional analysis. Only the papers {1-67] are mentioned in which
the flow of polymer solutions in tubes was discussed, because of the lack of space. Many of
the questions under discussion were touched upon earlier in [26], as well as in [3, 32, 47].

Velocity Defect Law. A flow domain exists far from the walls (exterior) in a developed turbulent
stream, whose integral characteristics are independent of the fluid properties (the fluid can be considered
ideal) and the wall roughness but are determined by the natural length and velocity scales.y

These scales in a steady flow in a tube are determined, in turn, by the tube radius r, the distance
to the wall z, and the momentum flux to it uz* so that we have for the deviationi of its mean velocity from
the maximum value U

U—Cule)y =usfy (n), n> 1,

fu (1) = L (1)=0.

Here fi{n) is the universal dimensionless function n = z/r, I is the set of lengths of "molecular" influence.

@)

The relationship (1), known as the "velocity defect law," or the "external law" of turbulent flow sim-
ilarity, is confirmed well for both a viscous fluid as well as for weak polymer solutions [8, 9,16, 18, 24,27,
38, 53, 57].

An intermediate domain {r » z > 1) exists in developed turbulence, in which an isolated length scale
is absent and a change in scale can result only in a parallel shift of the velocity profile. The unique con-
tinuous distribution of this kind is the logarithmic, so that we can write

o) = — A ng - By —uw{y), 07 L, 2)
wi{n) = 0 for n = 7.

According to measurements in a viscous fluid ny & 0.25, A; = 2,5, By = 0.7. For weak solutions in
"large" tubes, (2) also holds [8, 9, 15-17, 24, 25, 31, 32, 36,40, 41,42, 44, 51, 57-60, 67, 38].

The Wall Law. The velocity distribution in the "internal™ near-wall region {z < r), on the other
hand, is independent of the external scales similar to r but can depend on the "molecular" properties of
the fluid and on the wall structure.

The governing parameters for the flow near a smooth wall are z, ux and the viscosity v in a viscous
fluid. Their other characteristics must also be taken into account in the description of solutions.

7The fluid is considered incompressible and the system of measurement units is such that the density is
p=1,
{The acceleration, rather than the absolute value of the velocity, is meaningful in an ideal fluid.
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Experiments show that many characteristics of solutions are essential to reduce the drag: the con-
centration and molecular-weight distribution of the polymer molecules, the type of solvent, the branchi-
ness and stiffness of the polymer chains, the pH of the solution, etc.

Let us assume that all these quantities can be taken into account by using the additional length param-
eter ! (or the time¥ 6) and a set of dimensionless parameters p (concentration, say) independent of the
magnitude of the viscosity. Then we obtain for the velocity profile at a smooth wall

cuty =f@, 1t o), 2o,
(3)
Fe0, ..)—0,

which compares the content of the "internal law" of similarity to the "wall law." Here f is the universal
dimensionless function and the cross marks the variables nondimensionalized by using} us and v. In the
intermediate domain, we have as before

f, 0, py -Ajnz" 2 B{", p), rP >z 1, 0N )
Measurements yield B = By ® 5.5,

Maximal Velocity. When there is a "logarithmic layer" (2), (4) in developed turbulence, it follows
from (1)-(4)

U -Alnr : By- B, p). (5)

Introducing the Reynolds number Re’ = Utr* and the drag coefficient cf = 2(U")™?, this relationship can be
rewritten as

V2%, AlnRe"V¢;/2)" B,  B(r*Re I eii2, p). {6)
If the length ] normalized in such a way that 1 = 1 would correspond to the beginning of the influence of
the polymer on the turbulence is introduced in place of I, then we obtain for the number Rocr for which the
drag reduction starts

Re" = -‘ (A, mL- B B o I L.,
or /,(' TR R Ls v, (o) @
for the length and time parameters, respectively.
Approximate Description of the Velocity Profile. If the details of distributions close to the wall are
neglected, then the influence of the polymer reduces to high filling of the profile because of "slip at the

wall." Such a single layer description has been discussed in [2, 5,16,30, 52]. Its accuracy is certainly not
high.

It is assumed that the velocity distribution near the wall has the same linear form for weak solutions
as for a viscous fluid. The majority of the measurements {24, 25, 38,41, 51, 53, 55, 56, 57, 63] favor such an
assumption, and hence, a two-layer description (see [8,12, 59] for example)

P gy [T TN ®
LAy Inz"l B, p), A'<Tz8 <t
A" = A InAY L B, p) (9)

is often used for the interior domain. In a viscous fluid A™ = A]: ~ 11,6 and the accuracy of the description
is not satisfactory only in the transition zone A[{/fﬂ zgt ¢ 3A3L (Fig. 1). Similarly in polymer solutions
with slight drag reduction.

For a large drag reduction (7*' > 1) the A™ increases significantly and the transition zone in whose
subregion 1 < z* <« I" there is no preferred length scale and therefore the velocity distribution is almost
logarithmic, is expanded strongly. The same should be expected for the dependence of B on I*. The lo-
cation of the viscous sublayer boundary A; for I+ > 1 can depend on v and on p but not on Z, and conversely,
the location of the outer boundary A, should be independent of the viscosity.

By using ux the quantities with dimensionality of the length fus can be compared to quantities with the
dimensionality of the time ¢ in a turbulent shear stream, and conversely.

{The value of the viscosity on the wall is used. Such an approximation is satisfactory if the change in
viscosity within the viscous sublayer and the transition zone is small. This is visibly so in weak solutions.
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Fig. 1. Model representation of the mean velocity profile: 1) <u®>=1z%; 2)
<ut>=Alnz" + By 3) <ut>=A(Inz" + By +AB; 4) <ut>=A,Ilnz* + Bo;
5) <ut>=11.6 Inz*—16.8. The dashed lines show the behavior of the true
profile near the characteristic points Ay and A,.

Fig. 2. Drag curves: 1,2) for solutions in tubes with radii ry and ry; 3)
laminar flow; 4) turbulent viscous fluid flow.

Using all these asymptotic dependences for 1™ ~ 1, we obtain the following three-layer description
of the velocity profile at the wall (Fig. 1)

L

z", AT
FG*, 1, py =4 Agp)Inz® - B, (p), "
AyInzt =B, p), AY <27,
0, <1,
B— B,=AB - i H
Ay(p)int, =1,

where we have by requiring that this model reduce for 77 — 1 to the two-layer model for a viscous fluid
(8):
A = AV =116, AF =~ 11.6IF, "> 1. (12)
The conditions for continuity of the distribution (10) impose the constraints
Ay = Ay -- Ay, By =116 — 2454, (13)

Therefore, the form of the velocity profile for a solution in a three~-layer approximation is deter-
mined completely by the two additional parameters A;(p) and It

Found empirically in [12] was the formula

AB | 0, e <M 14)
lalg(!t*/uﬂ:cr), fy ™ Uy o
which is obtained from (11) if the following notation is introduced
o =234, Uy =V (1), (15)
o = 4.64; t, = Va0t (0) (16)

for the length and time parameters, respectively. A formula of the type (14) was used for the time param-
eter in [8].

The general considerations do not exclude the possibility of saturation of the dependence of B on 1t
for 17> 1, Found empirically in[61]is the formula
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for which the intermediate asymptotic is the logarithmic dependence presented above, where

o= 116AB,,,, 4o~ 0.37 V Twe

The three-layer approximation (10) is often used {42, 43,46, 52], hence it was considered in [46] that
A, can take on any value depending on the solution, and the coefficient A,, similarly to A;, was declared a
universal constant in [42, 43] and A, # 10 was found in [42] and A, &~ 11,7 in [43].

AB = ABma a7

If the absence of inflection pointi on the mean velocity profile (10) is required, then
A, <A, < 11.8. (18)

For A, = 11.6 the three-layer description (10) is analogous to the known Karman model. A somewhat dif-
ferent generalization of the Karman model was used in [28, 60].

Drag Reduction. Integrating the velocity distribution with respect to the tube cross-section for de-
veloped turbulence when Ay, < r, we find

1
U*—<:7+>:0z3,+%A,—ayw(vn(wmdn. A& (19)
Ne

here C is independent of the fluid properties and C = 4.1 according to measurements in a viscous fluid.

Eliminating U from (5), (19) and introducing the drag coefficient A = 8u% /<0 >? and the Reynolds
number Re = 2r<u >v‘1, we obtain

V&7 — A In(Rel/2/32) 1 2.1 AB, (20)
where AB = 0 for Re < Regypin conformity with (13) and

AB =A,1n (Re} 4/32) — A, In (r/D),
R - (21)
AB = 24,1n (Re V' 4j32) — A, In(r}/vD), Re > Rey,

for the length and time parameters, respectively. In both cases, it is also possible to write (see (14)-(16))
AB = o 1g (Re V'2/32) — a1g (rit /¥), Re> Regy. (22)

It is seen from (20)-{22) how the drag depends on the tube radius, and in particular (Fig. 2)

2r r
Req, = A (Al In .

-

v (1
:J ; . 23)
Uger [ ']’/ﬁ:’_?é (

_;-2.1), L=

The identical stress on the wall u% cr corresponds to the beginning of drag reduction in tubes of diverse
diameters for the same solution.

Such singularities in the drag reduction are characteristic for all polymer solutions. The effect of
the diameter had already been noted in {1, 3,4, 7}. The critical stress of the beginning of the effect had
been detected [8,10,12,13,14]. The two-parameter dependence of the effect on & and ux ., is verified well.

Formula (9) can be given the form

Uycuy =11 CVA8.
The deductions about the change in U/ <u> from experimental investigations [31-33, 37, 62] are contradic-
tory.

A deviation from dependences of the type (20)-(22) occurs principally at high Reynolds numbers. It
has been established that in the majority of cases this is related to the degradation of solutions of macro-
molecular substances in a turbulent stream. This is beyond the scope of the analysis presented above.

+In the presence of inflection points on the mean velocity profile, the question of the stability of such a
flow arises.
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Fig. 3 Fig. 4
Fig. 3. Drag curves. 1) A = 64/Re; 2) V8/A = 2.5In (ReVA/32) + 2.1; 3) limit
asymptote; 4) from (27); 5) from (26); 6) V8/A = A,In(RevVA/32) + 2.1 —A,ln
(r/1); 7) VE/X = (Ay + 2A;) In (Re VA/32) + 2.1— 2A;1In (r/V,p). The domain for
"small" tubes is cross—hatched. '

Fig. 4. Dependence of the minimum diarheter 2rp on <u > for 1) viscous solvent;
2) solution flowing without drag reduction; 3,4) solution whose drag reduction is
characterized by the parameter @ or !, respectively; 5) 2ry; = 17.66<u>.

Minimum Diameter. Up to now we have spoken about developed turbulence, i.e., flows in tubes of
such large diameters and for such high Reynolds numbers that the external sublayer of the turbulent core
and the near-wall zone do not overlap

Ner > Ay
and a logarithmic zone with a distribution of the type (2), (4) exists.

It is not taken into account in the three-layer description (10) that a smooth change in the true velo-
city profile occurs near z* = Ay for two-three A; . Taking this into account, let us select 2.5A, for the
boundary of the transition zone and then by using (12) we obtain the following estimate for the minimum
diameter for which speaking about the usual logarithmic zone still has sense:

‘ 250, I <1,
i~ - (24)
| 250, T = 1,
which can be rewritten for the Reynolds number
3.5.107, <1,
Re, =~ [ (25)

Y (3.50100 40 2504, InTH I, T 1.

Hence, it is seen that in a viscous fluid, as well as for a flow without drag reduction (Re < Regyr),
this estimate agrees with the upper value of the Reynolds number for the transition from the laminar to
the turbulent flow modes.

On the (A, Re) plane the curve
V8k, = A, (p)In (Re, V'4,/32) + 2.1 —4.84,(p) (26)

separates the domain of "small" tubes (hatched in Fig. 3) from the domain of "large" tubes for a given
polymer solution. If (18) is taken, then the steepest curve of this kind will be

V'8/A = 11.6In (Re V4/32) — 42 27)
{the dash-dot curve in Fig. 3).

Formula (25) shows that the "minimum diameter" in a viscous fluid and in solutions with Re < Regy
diminishes as the velocity increases

2, ~3500v/ (i . (28)
If the length ! is responsible for the drag reduction, then it follows from (24)
2ry A 2500 = 250v/u . (29)
If the time parameter plays the principal part, then

2r, ~ 25081, = 250vi, [t cr, Uy > Uger (30)
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or expressing ux in terms of the mean velocity
2r, = 250x ) v, ¥(14.2 4 24,Inx) = (u) V. (31)
All three dependences of 2ry[ on <u > are shown in Fig. 4.

As is seen from (30), (31), a "large” tube becomes "small" as the velocity changes. This is seen in
Fig. 3. The drag curve when the time is the main parameter (see (20), (21)) has a slope (A; + 2A,)
greater than the slope (A; + A;) delimiting the curve (26), and hence intersects it.

The minimum diameter concept was first discussed in [26], and then in [39,45]. The formula
2n =~ 60.6AB (32)
was found empirically in [45]. A rather different dependence
2ri¥ - 250 exp (ABJAy) (33)
follows from (11), (24).

Small Diameter Tubes. Although the molecular properties of the solution in tubes with radii r less
than ryp are essential for all stream domains, nevertheless, the influence of viscosity for r > A; will be
bounded by the thin near-wall domain as before. The drag reduction is hence large (I* > 1) and just as
has been done for "large" tubes, the following asymptotic formulas can be written

Ur— <lt+> = (Pl(na l/l’, p)’ l‘.: z! >> 1,

(\u-i- > “:'q) (2—"’ P); zﬁ; \/“irH l+»

(34)
gy = — Ay (pylnn -9 (Ur, p). T i, r,
g = — Ay (p)Inz" By (p), 12" KLY, 17

Hence, it is seen in particular that for a large drag reduction in small tubes the logarithmic distribution
with coefficient A, is displaced by a logarithmic distribution with coefficient Ay(p).

Furthermore, for A; < r we have the relationships
Ut w= Adpylanr' - B, (p) + $ Ui, p),
U*— cu*y =Cr, p),
which can be rewritten as a drag law
B Ag(p) (Re VR/32) -5 Bullir, p), (35)
in which an unknown function of the tube radius entered.

An attempt was made in [45] at an experimental determination of a small tube drag law., However
the spread of the data around the curve proposed there was sufficiently great.

Limit Asymptote. If the constraint (18) for one of the coefficients in (35) is supplemented by a con-
straint for Bé, then we obtain the equation of some limit curve enclosing the drag curves for solutions
from below. We obtain such a constraint by assuming a lower critical transition point to turbulence in
a solution exactly as in a viscous fluid. Then the equation of the limit curve passing through it will be

V8~ 11.61In(Rey A/32) — 32. (36)
Such an equation for the limit asymptote of the drag reduction was proposed in [16, 21,42,43, 54]. Power-
law approximations of the limit asymptote were discussed in [11,16, 19, 20-22].

A distinctive singularity of small tubes is the fact that drag reduction can already occur therein in
the transition region for Re ~ 2.3.10%-3.5-10%. The upper critical Reynolds number of the transition to
turbulence can hence be absent for a solution. The question of the lower critical number is not even sim-
ple. The lag of the transition in solutions is mentioned in [21, 23, 29,48]). The lower critical Reynolds
number does not vary according to [14,16]. However, significant perturbation level in the flow of solutions
has already been noted at Re < 10° in many papers [6, 33,42, 49, 65, 66].

NOTATION

<u> is the mean flow velocity;
<u> is the fluid discharge through a tube section;
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U is the maximum velocity;
ux , is the dynamic velocity;
ut =u/ux is the dimensionless velocity;
r is the tube radius;
7 is the distance from its wall;
n=z/r, zt = zux/v  are the dimensionless distances;
v is the viscosity coefficient;
0 is the characteristic time parameter of a fluid;
! is the characteristic length parameter;
7, 0 are the renumbered length and time;
An, Bp are the coefficients of the distributions for the velocity;
AB =B—By is the non-Newtonian increment of B;
Ay is the viscous sublayer thickness;
A, is the transition zone thickness,
Re is the Reynolds number;
A is the drag coefficient;
Uk oy is the critical value of the dynamic velocity;
2ry is the minimum diameter;
P is the set of dimensionless characteristics of the solution.
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